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1 Abstract

With the advent of commercially feasible electric vehicles, in-tire vehicle
motor architectures are becoming more common place. [1] In such designs, the
traditional differential axle technology is replaced with a motor, allowing direct
torque control of each wheel independently, and thus introducing new degrees
of freedom to the system. Among other benefits, such control allows for Direct
Yaw Moment Control (DYMC), where differential steering is used to induce
a moment, independent of the steering angle. [2] The racecar currently under
development by MIT Motorsports, for use in the Formula SAE (FSAE) Electric
competition of 2022, is taken as an example case, and a controller is developed.
Due to the non-linearity of the system, a sequential Linear Quadratic Regulator
(sLQR) is used, along with an Extended Kalman Filter (EKF). [3] Given a set of
driver commands, the optimal control is then found, and applied, yielding good
control over one lap of the racetrack. This control scheme thus presents a viable
method of DYMC for the vehicle, and should provide substantial performance
improvements.
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2 Introduction

Vehicle dynamics, as might be expected from the presence of tire mechanics
and aerodynamic drag, are highly non-linear. The fame given to talented racing
drivers reflects this, and the trajectory planning optimization problem they
routinely solve is non-trivial. It is not attempted here, beyond rudimentary
motion profiling for testing the controller. Rather, what is needed is a tool
to aid the driver. With each wheel’s torque independently controllable, the
driver has an added ability to apply a yaw moment to the vehicle, and thus
to maneuver it as needed. Accordingly, for the foregoing, the desired motion
profile becomes the input, and the controller’s aim to track it.

The example case considered is that of a lightweight, Formula-1 style elec-
tric vehicle designed for use in the FSAE competition. The competition goal
is for college students to conceive, design, and fabricate a complete electric ve-
hicle for an autocross-style race. For the summer 2022 race, MIT’s team –
MIT Motorsports – is, for the first time, implementing a 4-wheel drive archi-
tecture, including independent control of the front wheels’ torques. Due to the
mechanical and electrical challenges of this task, a single rear motor and axle
differential are maintained from previous years to minimize the scope of design
changes. However, in order to best utilize the new architecture, a controller is
needed to supplement the driver and provide DYMC, as described above.

The physical constraints of the system substantially limit both the actuator
power, and its control authority. A detailed model of these dynamics is thus
first developed, and then used to implement a controller. Due to the non-
linearity, and the dependence of actuator control authority on the vehicle’s
state, the sLQR computes the gains at each time step, using a local linearization.
Similarly, the EKF accounts for real system noise – artificially created in this
model with MATLAB’s pseudo-random noise generation – and these elements
are combined to create a realistic model.

3 Modeling

For the purposes of this analysis, the most basic model preserving the de-
sired system dynamics shall be used. Accordingly, longitudinal and lateral load
transfer, tire traction curves, suspension compliance, pitch, and roll effects are
all ignored, as is longitudinal tire slipping. A modified bicycle model is intro-
duced, where the separation of the front wheels is only considered insofar as
needed to calculate the lateral moment created, and then ignored for the re-
mainder of the analysis. In Figure 1, the traditional bicycle model is observed,
allowing for steering of the front wheel, but approximating the wheelbase of the
vehicle as consisting of only two wheels. [4] [5] [6] The key forces are from the
traction and cornering stiffness of each virtual tire, and the aerodynamic drag.
Importantly, and substantially different from an actual bicycle, roll dynamics
are ignored, and the system is presumed stable.
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Figure 1: Bicycle model of a motor vehicle. x̂ is the longitudinal axis of the
car, and ŷ the lateral one. v is the longitudinal velocity of the vehicle, vy is its
lateral velocity, ω its yaw rate, and δ the steering angle. It also has longitudinal
drag force FDx, lateral drag force FDy, rear total traction Fr, forward total
traction Ff , and respective front and rear cornering forces Fyf and Fyr. Izz is
the second moment of inertia of the vehicle about its center of mass and ẑ axis.

First and foremost, Newton’s second law is applied about the vehicle, calcu-
lating both forces about x̂ and ŷ, as well as the sum of torques about ẑ. Note
that the time derivative of dp⃗

dt is found using the transport theorem, since x̂ and
ŷ form a rotating reference frame.

Izz · ω̇ = Mfront + a(Fyf cos δ + Ff sin δ)− bFyr (1)

m(v̇ − vyω) = Ff cos δ + Fyf sin δ + Fr − FDx (2)

m(v̇y + vω) = Fyf cos δ + Ff sin δ + Fyr − FDy (3)

The drag forces are calculated with the aid of computational fluid dynamic
models conducted on the vehicle’s aerodynamics package, with the reported
CDAlong and CDAlat being the respective drag coefficients multiplied by the
areas, and ρ the density of air at sea level and 30 °C. Due to the complexity of
modeling it, the moment exerted by the drag during turning is ignored.

FDx =
1

2
ρCDAlongv

2 (4)

FDy =
1

2
ρCDAlatv

2
y (5)
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Figure 2: (a) Side-slip angle of the front tire, αf , noting the inclusion of the
car’s center of mass rotation to its velocity. (b) Side-slip angle on the rear tire,
αr, again including the car’s rigid body rotation.

The slip angle of a tire, as seen in figures 2, is a trigonometric function of
the longitudinal, lateral, and angular velocity of the car, and is a measure the
degree of slip of the tire relative to its travel.

αf = arctan

(
vy + aω

v

)
− δ (6)

αr = arctan

(
vy − bω

v

)
(7)

Next, the Society of Automotive Engineers defines the cornering force for
small tire slip angles as linearly proportional to this slip angle, such that the
lateral forces on the tires can be found via a relativity simple relation with so-
called cornering stiffness C. In reality, C shows a strong dependence on the tire
normal load, but such mechanics are ignored in this analysis.

Fyf = −2Cαf (8)

Fyr = −2Cαr (9)
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Figure 3: Tricycle model of the vehicle. Used to calculate rolling without slip-
ping velocity conditions, and the yaw moment. Ffl is the traction from the
front left wheel, and Ffr from the front right. The wheels are spaced from the
center plane of the car by distance d, and the front wheel is a distance a from
the center of mass, while the rear wheel is distance b from the same.

In figure 3, the separation of the front wheels is briefly considered. By
inspection, the difference between the front traction forces creates a coupled
force pair, hence a moment about the front of the vehicle.

My = d(Ffr − Ffl) (10)

And assuming the tires to roll without slipping longitudinally, the angular
velocity of each wheel is also found. Although the total distance travelled by the
wheels is a continuous function of the history of the vehicle and steering angles,
instantaneously, its time derivative depends only on the vehicle’s velocity and
the steering angle. The angle traversed from rest of the front-right, front-left,
and rear wheels are ϕfr, ϕfl, and ϕr, respectively.

v = Rwϕ̇r (11)

(v + ωd) cos δ + (vy + ωa) sin δ = Rwϕ̇fr (12)

(v − ωd) cos δ + (vy − ωa) sin δ = Rwϕ̇fl (13)

These geometric constraint equations are now differentiated with respect to
time to find the wheel angular accelerations.

v̇ = Rwϕ̈r (14)
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(v̇+ ω̇d) cos δ− (v+ωd)δ̇ sin δ+(v̇y+ ω̇a) sin δ+(vy+ωa)δ̇ cos δ = Rwϕ̈fr (15)

(v̇− ω̇d) cos δ− (v−ωd)δ̇ sin δ+(v̇y − ω̇a) sin δ+(vy −ωa)δ̇ cos δ = Rwϕ̈fl (16)

Figure 4: A free body diagram of a wheel of the car. Tfl, Tfr, and Tr are the
individual torques commanded to the front-left, front-right, and rear wheels,
respectively. Similarly, ϕfr, ϕfl, ϕr are the total angular rotations of the front-
right, front-left, and rear wheels. Iw is the rotational inertia of the wheel and
gearbox, and Rw is the wheel’s radius.

Next, considering torque balance about the axles of each of the three wheels,
such as that indicated in figure 4 once more using Newton’s second law, the
motions found above can be related to the forces applied. Rolling resistance is
ignored, as are any viscous effects of the bearings supporting the wheel.

FfrRw − Tfr = Iwϕ̈fr (17)

FflRw − Tfl = Iwϕ̈fl (18)

FrRw − 2Tr = 2Iwϕ̈r (19)

Setting the two relations for the wheel angular velocities equal, equations
(20), (21), and (22) are obtained.

v̇ =
Rw

2Iw
(FrRw − 2Tr) (20)

(v̇+ω̇d) cos δ−(v+ωd)δ̇ sin δ+(v̇y+ω̇a) sin δ+(vy+ωa)δ̇ cos δ =
Rw

Iw
(FfrRw−Tfr)

(21)

(v̇−ω̇d) cos δ−(v−ωd)δ̇ sin δ+(v̇y−ω̇a) sin δ+(vy−ωa)δ̇ cos δ =
Rw

Iw
(FflRw−Tfl)

(22)
These equations can then be re-arranged, using the linear sum and difference

of (21) and (22) as seen below.

Fr =
2Iwv̇

Rw
2 +

2Tr

Rw
(23)
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Ff = Ffr + Ffl =
2Iw

Rw
2

[
cos δ(v̇ + vy δ̇) + sin δ(−vδ̇ + v̇y)

]
+

Tfr + Tfl

Rw
(24)

Ffr − Ffl =
2Iw

Rw
2

[
cos δ(ω̇d+ ωaδ̇) + sin δ(−ωdδ̇ + ω̇a)

]
+

Tfr − Tfl

Rw
(25)

Substituting force definitions into the second law equations found in (1), (2),
and (3), the following equations of motion are obtained. Combined with (24),
(25), and (23), these form a system of equations linear in v̇, v̇y, ω̇, and δ̇.

Izz · ω̇ = d(Ffr − Ffl) + a(Ffr + Ffl) sin δ − 2C(aαf cos δ − bαr) (26)

m(v̇ − vyω) = (Ffr + Ffl) cos δ − 2Cαf sin δ + Fr (27)

m(v̇y + vω) = −2Cαf cos δ + (Ffr + Ffl) sin δ − 2Cαr (28)

Beyond this point, the algebra for the non-linear equations of motion be-
comes truly prohibitive. The full solution is not even worth printing, but is an
analytic formula of finite length, and thus amenable to computation on modern
processors. Using equations of motion (26), (27), and (28), along with the var-
ious results for Ffl, Ffr, αf , and αr, v̇, v̇y, and ω̇ were found. This results in a
set of non-linear state equations of the functional form below:

dx⃗

dt
= f̃(x⃗, u⃗) (29)

Finally, the output equation is trivial, as all reported variables are measur-
able. The steering angle is easily measured via an encoder, and v, vy, ω can
all be found - albeit with some noise - through the vehicle’s on-board Inertial
Measurement Unit (IMU).

y⃗ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 x⃗+ 0 · u⃗ (30)

Where the state and input variables are:

u =


δ̇

Tfr

Tfl

Tr

 , x =


ω
v
vy
δ

 (31)

The numerical vehicle parameters used for the model can be found in table
1, and are from MIT Motorsports’ design data. It should be noted that this is a
highly non-linear model, and that linearizing about x⃗ = 0 eliminates significant
elements of the model, such as the ability of the racecar to drift.
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Table 1: Model Constants

Variable Value
a 0.762m
b 0.762m
d 0.610m
Rw 0.203m
C 24.293 N

rad

Izz 180.5 kg ·m2

Iw 1.6 kg ·m2

ρ [8] 1.145 kg
m3

CDAlong 1.64m2

CDAlat 1.72m2

4 Dynamic Linearization

Accordingly, instead of using a static regulator, the model shall be updated
dynamically, with the Jacobian approximation of the non-linear model calcu-
lated sequentially at each point. For each (t, x⃗, u⃗), we can analytically find the
first order derivative along each component, hence the Jacobian, A(x⃗, u⃗) and
B(x⃗, u⃗).

A(x⃗, u⃗) =
∂f⃗

∂x⃗

∣∣∣∣∣
x⃗,u⃗

(32)

B(x⃗, u⃗) =
∂f⃗

∂u⃗

∣∣∣∣∣
x⃗,u⃗

(33)

The Jacobians then provide the state space approximation of equation (34).
Note that this is not used for the actual integration of the dynamics; for that,
f⃗(x⃗, u⃗) is used, and provides the input to the feedback of the system. Rather,
the linearization is only to determine system gains and to enable the EKF.

dx⃗

dt
= A(t)x⃗+B(t)u⃗ (34)

5 Controller

Were this system linear, by the separation principle, we could design the con-
troller independently of the observer, assuming full state feedback were available.
Said feedback is available, and so we shall use a control law as in the linear case,
understanding some revision may be necessary to move the closed-loop poles of
the augmented observed system due to the non-linearities.
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u⃗ = K(r⃗ − x⃗) (35)

The gain matrix K( ⃗x(t), ⃗u(t)) is found via optimizing the linear quadratic
regulator cost function, equation (36), subject to the approximation of equation
(37). The factor of 1

2 on the estimated point for A and B is to account for the
non-zero set-point of the system, and to center the approximation over the span
of dx⃗

dt it must cover.

V =

∫ ∞

0

(
x⃗TQx⃗+ u⃗TRu⃗

)
dt (36)

dx⃗

dt
= A

(
⃗x(t)

2
, u⃗

)
x⃗+B

(
⃗x(t)

2
, u⃗

)
u⃗ (37)

Somewhat arbitrarily, the design requirement is set as a maximum error in
angular velocity ω and steering angle δ of ∆ωmax = 0.05 rad. Since the velocity
needs only coarser control, the maximum error is set as ∆vmax0.5m/s. These
are then adjusted by numerical experimentation, the results of which are seen
below.

Q =


10

(∆ωmax)2
0 0 0

0 5
(∆vmax)2

0 0

0 0 5
(∆vmax)2

0

0 0 0 1
(∆ωmax)2

 (38)

More strictly, the control weight costs are determined based on the physi-
cal limits of the system. The forward wheels have a tractive limit of Tf,max =
126N ·m, and the rear wheels of Tr,max = 368N ·m. Due to mechanical con-
straints, the steering maximum angle is δmax = 30°. These values were then
used as a starting point for the actuation cost matrix, with the constants in-
dicated added in order to meet the aforementioned design requirements and
checked via numerical exploration.

R = 2 · 103


1

δ2max
0 0 0

0 1
T 2
f,max

0 0

0 0 1
T 2
f,max

0

0 0 0 100
T 2
r,max

 (39)

6 Filtering Observer

Although all states are directly observable via sensors, a Kalman filter is
still necessary due to to output noise and input disturbances. However, because
of the non-linearity of the system,a similar approach must be taken for the
observer to that done with the controller. As explained above, the system is
dynamically linearized by taking the Jacobian at each time step in order to find
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the controller gains; the same is done for the observer gains. This method forms
part of the Extended Kalman Filter (EKF). The EKF approximately follows the
same process as a regular Kalman filter, except that the state transition matrix
is replaced by the dynamic Jacobian. For the Kalman Filter, we find the gain
that minimizes the error covariance, defined as in equation (40).

Σ(t) = E{x̃(t)x̃(t)T }. (40)

In the regular Kalman Filter, its time evolution is given by equation (41).

Σ̇ = (A− LC)Σ+Σ(A− LC)T +Wc. (41)

Figure 5: Extended Kalman Filter Block Diagram [9]

With the EKF, the aim is to lose as little accuracy to the linearization as
possible, so for the prediction step f(xk|k, u

k) is used, where f is the nonlin-
ear relation from (x[k1], u[k1]) to x[k + 1]. To update the covariance a priori

(Pk+1|k), the Jacobian matrices with respect to the state (F
(x)
k ) and with re-

spect to the noise (F (v)) are used. There is an additional correction step after
the prediction, where the latest zk measurement is incorporated. In the predict
step K is the Kalman gain, and H replaces C as the transition matrix. Once
again, H is the Jacobian of h(x), which maps x to the output z. On the basis
of common hardware performance, a signal to noise ratio of 100 was assumed,
for both the input disturbance and the output noise.
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7 Motion Profiling

Figure 6: Hockenheim 2010 Formula Student Germany endurance track, aerial
view

A bird’s eye image of a representative track was found, along with its length
- see figure 6. [2]. This was the course used in the Hockenheim 2010 Formula
Student Germany competition, and each lap was 774m in length. [2]. First, it
was converted, using image recognition techniques, (see ”TrackReader.m”) to a
sequence of (x, y) points for the car to follow.

These resulting points were then fed into a symmetric moving average filter
twice to create a smoother trajectory with gradually changing finite differences.
Next, the total distance of the trajectory was calculated assuming a linear in-
terpolation. Finally, a time series was generated for the angular, longitudinal,
and transverse velocities of the vehicle, as well as its steering angle. This was
possible in part due to several simplifying assumptions about the velocity and
orientation of the vehicle along the track.

It was assumed that the transverse velocity would be sufficiently low during
travel that it could be reasonably neglected. Steering angle was assumed to
be the difference between a desired angle, taken to be the slope of the track
at the car’s position, and the car’s orientation, which could be calculated from
the cumulative sum of the angular velocity. The angular velocity of the vehicle
was approximated by applying a moving average to the slope of the generated
track trajectory, spreading out the angle change over longer periods of time to
represent a lag in the car’s orientation with respect to the path. The longitu-
dinal velocity represented was assumed to be near constant in magnitude at a
chosen maximum speed during travel and equal to the net velocity, with fixed
acceleration and deceleration rates at the beginning and end of the path.

To verify the competency of the motion profiling algorithm, the smoothed
data profiles were reconstructed using calculated linear velocity and trajectory
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slope data, then reconstructed using only the velocity information. While there
is some positional drift over the length of the lap, it is small compared to the
length of the lap, and is acceptable for the purposes of this paper.

Figure 7: Reconstructed trajectory profiles of the Hockenheim track from Fig.
6. Theta is the angle of the track trajectory and Omega represents the angular
velocity of the car.

8 Performance & Robustness

Tracking over the generated motion profile, the controller performs well,
despite a 1% noise and input disturbance to signal ratio, as well as the adjusted
set point of the controller. Figure 8 shows the degree of noise in the system
prior to filtering: this system looks nigh unstable, and does not appear to be
in good control. However, this is an artifact of the measurements, and figure 9
clearly shows better track of v, ω, and δ to the set point.
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Figure 8: Unfiltered State vs Time. There is substantial noise in the ω term.
Even without the filtering observer, the controller tracks the desired trajectory
decently.
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Figure 9: Filtered State vs Time. Comparing this to Fig. 8, the amplitude of
noise in ω has decreased. The effect on the other state variables is less apparent,
but also of lesser import for a yaw controller.

Importantly, too, the commanded inputs remain well within the required
bounds of the design constraint problem.
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Figure 10: Actuator Input vs Time. The maximum torque on the rear ”tire”
is approximately 325 Nm, which is within the capability of the rear motor.
Similarly, the torque inputs for both the front motors stay within their limits.

Additionally, while the errors exceed the arbitrary bounds provided in the
controller section, they are physically reasonable, and could be refined with
further work and better noise filtering, as seen in figure 11.
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Figure 11: The deviations of the tracked state variables, as calculated from the
observer, from the set point are shown.

Finally, as a note for future work, the tracking of vy is shown in figure 12.
As might be expected, turning induces some strafe, though here the controller
attempted to minimize it. However, even increasing the weight in the Q matrix
of the vy error by a factor of 106 does not decrease the magnitude of the error by
more than 50%. Clearly, then, the vehicle has poor control authority over vy, as
expected from the non-holonomic constraints and low steering angles assumed
over this racetrack. That said, vy also depends heavily on tire traction dynamics
not modeled herein, and so this is observed as a weakness of the model used
and an opportunity for future work.
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Figure 12: Plot of vy over time during the course. The set point was zero for
all times, hence this represents an error on the controller.

9 Conclusion

As seen in the results section, the sLQR developed here provides a pass-
able form of DYMC, using the differential steering torque to accelerate turning.
With the aid of the EKF, it is seen to be robust to system noise and distur-
bances. However, it has poor control over the system strafe, and lacks the tire
slip mechanics that complicate vehicle traction distribution during acceleration.
Nevertheless, it provides a basis for control, and an opportunity to implement
better motion planning algorithms to enable the human driver.

Indeed, that human-machine interaction is a complicated one: the driver will
need to develop intuition for the system response to wheel and throttle com-
mands, using their biologic neural net, so to speak. In turn, the vehicle control
unit must anticipate the driver and enable their desired vehicle behaviour, all
the while maintaining ergonomic control dynamics. Such a problem is well be-
yond the scope of this paper, but would be enabled by the sLQR developed
herein as a viable sub-component.

Furthermore, this paper presents a model for how electric vehicle control
can be approached, even generalizing to the higher degree of freedom, four-
wheel independent control architecture. Through the construction of a similar
hybrid multi-wheel/bicycle model, the system dynamics could again be rendered
tractable, and an sLQR created to control them given a motion planner.
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